

The Dataset Attribute Family of Classes
Mark Tabladillo, Ph.D., Atlanta, GA

ABSTRACT
This presentation will specifically present the dataset attribute
family, an abstract parent and its twenty-five children. This family
of classes provides information on and from SAS® datasets, and
the structure is based on the Analysis Matrix design pattern
(Shalloway and Trott, 2002). The structure is of generic utility for
any application which accesses SAS datasets.

Extensive experience with classes or objects or design patterns
(Gamma, et. al., 1995) is not necessary for this talk, but the
presentation assumes knowledge of how to code a class and
instantiate an object with SCL. The core techniques apply to any
operating system and any object-oriented language.

INTRODUCTION
To assist states and countries in developing and maintaining their
comprehensive tobacco prevention and control programs, the
Centers for Disease Control (CDC) developed the Youth Tobacco
Surveillance System (YTSS). The YTSS includes two
independent surveys, one for countries and one for American
states. A SAS/AF® application was developed to manage and
process these surveys. During a four year period, over 1,000,000
surveys have been processed for 35 states and 100 international
sites (from 60 countries).

This application has been previously documented, both in terms
of overall development (Tabladillo, 2003b) and class structure
(Tabladillo, 2003a). In summary, during its lifetime, the
application grew from zero to forty-four classes. This presentation
will specifically define and describe the dataset attribute family, an
abstract parent and its twenty-four children, a family developed to
automate many common dataset handling functions and
sequences within SCL.

DATASET ATTRIBUTE OVERVIEW
Twenty-five of 44 classes in the current application are part of the
dataset attribute family. The single parent class is called
DATASET_ATTR and given a dataset ID (or number), it will
determine the core dataset characteristics from the SCL ATTRC
and ATTRN commands, and store the results in object variables.
The five methods are 1) create a new dataset, 2) open an existing
dataset, 3) update an existing dataset, 4) close a dataset, and 5)
delete a dataset.

The subclasses inherit the parent’s functionality using the optional
EXTENDS command on the CLASS statement. Each of the 24
subclasses refers to a different type of dataset. For example, the
class DATASET_ATTR_LAYOUT refers to the questionnaire, and
DATASET_ATTR_DATA refers to the initial survey data. Inside
these subclasses, the variable numbers are determined for the
standardized list of expected variable names. Some variables are
required to run processes, and other variables are optional (if
included, they will trigger certain processes). These subclasses
retain the results from the VARNUM command in object variables.

For example, putting the survey questionnaire layout in its own
class allows the developer to define two objects for the same type
of dataset (a layout) and possibly do something with these two
layouts together. The application compares the standardized
master layout with the region-specific (typically customized) layout
for inconsistencies during customization.

One subclass of general use is called
DATASET_ATTR_PROCFREQ and was created specifically to
read the standard output dataset generated by proc freq. Both

the count and the percent are kept as object variables when the
object is presented with a valid dataset ID.

Though there are 23 different declared types of datasets (adding
the generic type makes 24 classes), future subclasses could
easily be added by subclassing the parent class, and then
customizing the subclass attributes and functions to reflect the
structure of the new dataset. The family relationship most closely
matches the Strategy design pattern (Gamma, et. al., 1995), with
the common overridden method being the one described by the
datasetID attribute.

Gamma, et. al., 1995 summarize the Strategy design pattern as
follows:

Strategy (page 315) Define a family of algorithms,
encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary
independently from clients that use it. (inside cover)

The dataset attribute family describes the different strategies
available, with each subclass having a different set of methods (a
different “algorithm”) unique to that dataset.

BASE FUNCTIONS: ATTRN AND ATTRC
The dataset attribute family started with the desire to
systematically include the information made possible by the SCL
commands ATTRN and ATTRC. These two commands return
attributes for a SAS table (or dataset). ATTRN returns numeric
attributes and ATTRC returns character attributes.

The following table summarizes the information available through
these commands (for version 8); all the attributes are listed
because all the attributes were coded into the dataset attribute
base abstract class:

Attributes for the ATTRC Function
'CHARSET' -- returns a string indicating the character set of the
machine that created the SAS table
'ENCRYPT' -- returns 'YES' or 'NO' depending on whether the
SAS table is encrypted.
'ENGINE' -- returns the name of the engine used to access the
SAS table.
'LABEL' -- returns the label assigned to the SAS table.
'LIB' -- returns the libref of the SAS data library in which the SAS
table resides.
'MEM' -- returns the name of the SAS data library member.
'MODE' -- returns the mode in which the SAS table was opened
'MTYPE' -- returns the type of the SAS data library member.
'SORTEDBY' -- returns an empty string if the SAS table is not
sorted. Otherwise, returns the names of the BY columns in the
standard BY statement format.
'SORTLVL' -- returns an empty string if the SAS table is not
sorted. Otherwise, returns a code indicating sort.
'SORTSEQ' -- returns an empty string if the SAS table is sorted
on the native machine or if the sort collating sequence is the
default for the operating system. Otherwise, returns the name of
the alternate collating sequence that is used to sort the file.
'TYPE' --is the SAS table type.

Attributes for the ATTRN Function
'ANY' -- specifies whether the table has rows or columns.
'ALTERPW' -- indicates whether a password is required in order
to alter the SAS table.
'ANOBS' -- indicates whether the engine knows the number of

rows.
'ARAND' -- indicates whether the engine supports random access.
'ARWU' -- indicates whether the engine can manipulate files.
'CRDTE' -- returns the SAS table creation date. The value
returned is the internal SAS DATETIME value for the creation
date. Use the DATETIME format to display this value.
'GENMAX' -- returns the maximum number of generations.
'GENNEXT' -- returns the next generation number to generate.
'ICONST' -- returns information on the existence of integrity
constraints for a SAS table.
'INDEX' -- indicates whether the SAS table supports indexing.
'ISINDEX' -- indicates whether the SAS table is indexed.
'ISSUBSET' -- indicates whether the SAS table is a subset.
'LRECL' -- returns the logical record length.
'LRID' -- returns the length of the record ID.
'MODTE' -- returns the last date and time the SAS table was
modified. Use the DATETIME format to display this value.
'NDEL' -- returns the number of deleted rows in the SAS table.
'NLOBS' -- returns the number of logical rows (those not marked
for deletion). An active WHERE clause does not affect this
number.
'NLOBSF' -- returns the number of logical rows (those not marked
for deletion) that match the active WHERE clause.
'NOBS' -- returns the number of physical rows (including those
marked for deletion). An active WHERE clause does not affect
this number.
'NVARS' -- returns the number of columns in the SAS table.
'PW' -- indicates whether a password is required in order to
access the SAS table.
'RADIX' -- indicates whether access by row number is allowed.
'READPW' -- indicates whether a password is required in order to
read the SAS table.
'TAPE' -- indicates whether the SAS table is a sequential tape file.
'WHSTMT' -- returns information about active WHERE clauses.
'WRITEPW' -- indicates whether a password is required in order
to write to the SAS table.

In practical use, most of the above table is not accessed.
However, coding all the options into the parent class allows future
possible use.

FIVE CORE METHODS
There are five core methods in the dataset family attribute
classes. The five methods are 1) create a new dataset, 2) open
an existing dataset, 3) update an existing dataset, 4) close a
dataset, and 5) delete a dataset. The first three methods are
based on the OPEN command, the fourth based on the CLOSE
command, and the last based on the DELETE command.

Probably the most used method is the OPEN method, which
opens a dataset in the default “input” mode (meaning that values
can be read but not modified). Here is the code for that specific
method.

OPENDATASET:public method
 inputLibnameDataset:INPUT:CHAR
 return=num
 /(
 Description='Opens dataset in Input
Mode'
);
 DCL
 num
 returnCode
 ;
 * INPUT mode -- values can be read but
cannot be modified. (This is the default.);

 returnCode = 0;
 if exist(inputLibnameDataset,'DATA') then
do;
 datasetID =
open(inputLibnameDataset,'i');
 if datasetID then libnameDataset =
inputLibnameDataset;
 else
 systemMessage = '*** NETWORK ERROR:
DATASET CANNOT BE OPENED IN INPUT MODE -- ' ||
inputLibnameDataset;
 end;
 else do;
 systemMessage = '*** NETWORK ERROR:
SAS DATASET DOES NOT EXIST -- ' ||
inputLibnameDataset;
 end;
 return(systemError);
ENDMETHOD;

Here are some comments about this openDataset method:

1. The command uses the EXIST test first to be able to
send an error message specifically based on a dataset
not existing. The ‘DATA’ option on the EXIST
command insures that the method is attempting to open
a dataset (as opposed to, for example, a catalog).

2. The OPEN command has the “I” flag, indicating input
mode.

3. Upon a successful open, the class variable
libnameDataset is set to the value of
inputLibnameDataset. The main use of storing that
name is to allow a DELETE command in the future.

4. Any text stored in “systemMessage” is stored in an SCL
list; the variable “systemError” is the length of the
stored error list, and the number of items in this list is
what the method returns. SystemError can thus be
used as a test condition for an if/then statement.

The second method, UpdateDataset, is similar, but based on the
UPDATE command.

UPDATEDATASET:public method
 inputLibnameDataset:INPUT:CHAR
 return=num
 /(
 Description='Opens dataset in Update
Mode'
);
 DCL
 num
 returnCode
 ;
 * UPDATE mode -- values in the table can
be modified and rows can be read in random
order;
 returnCode = 0;
 if exist(inputLibnameDataset,'DATA') then
do;
 datasetID =
open(inputLibnameDataset,'U');
 if datasetID then libnameDataset =
inputLibnameDataset;
 else

 systemMessage = '*** NETWORK ERROR:
DATASET CANNOT BE OPENED IN UPDATE MODE -- ' ||
inputLibnameDataset;
 end;
 else do;
 systemMessage = '*** NETWORK ERROR:
SAS DATASET DOES NOT EXIST -- ' ||
inputLibnameDataset;
 end;
 return(systemError);
ENDMETHOD;

The third NewDataset method does not have an EXIST test.

NEWDATASET:public method
 inputLibnameDataset:INPUT:CHAR
 return=num
 /(
 Description='Opens dataset in New Mode'
);
 DCL
 num
 returnCode
 ;
 * NEW mode -- creates a new table. If
table-name already exists, the table is replaced
without warning;
 returnCode = 0;
 datasetID = open(inputLibnameDataset,'N');
 if datasetID then libnameDataset =
inputLibnameDataset;
 else do;
 systemMessage = '*** NETWORK ERROR:
DATASET CANNOT BE OPENED IN NEW MODE -- ' ||
inputLibnameDataset;
 end;
 return(systemError);
ENDMETHOD;

The fourth CloseDataset method is based on the datasetID
numeric attribute, which would have been stored only if a
successful open was completed:

CLOSEDATASET:public method
 return=num
 /(
 Description='Closes dataset and resets
datasetID'
);
 DCL
 num
 returnCode
 ;
 * Close all SAS tables as soon as they are
no longer needed by an application;
 returnCode = 0;
 if datasetID > 0 then do;
 returnCode = close(datasetID);
 if returnCode = 0 then datasetID = 0;
 else do;

 systemMessage = '*** NETWORK ERROR
IN CLOSING DATASET ' ||
putn(datasetID,'best7.');
 end;
 end;
 return(systemError);
ENDMETHOD;

As in the openDataset method, the CloseDataset method also
returns the number of error messages as its return code.

Finally, the last core method is the DeleteDataset method, which
is based on the class variable libnameDataset (set only upon a
successful open).

DELETEDATASET:public method
 return=num
 /(
 Description='Deletion of dataset'
);
 DCL
 num
 returnCode
 ;
 * Deletes a member of a SAS data library -
- the EXIST requirement restricts to SAS tables
only;
 returnCode = 0;
 if datasetID then returnCode =
closedataset();

 if not(exist(libnameDataset,'DATA')) then
 logMessage = 'Attempted to delete ' ||
libnameDataset || ', which does not exist as a
Dataset';

 if not(systemError) and
exist(libnameDataset,'DATA') then do;
 returnCode = delete(libnameDataset);
 if returnCode = 0 then datasetID = 0;
 else do;
 systemMessage = '*** NETWORK ERROR
IN DELETING DATASET ' || libnameDataset || ' '
|| putn(datasetID,'best7.');
 end;
 end;
 return(systemError);
ENDMETHOD;

In this fifth and last DeleteDataset method, the code first attempts
to close the open dataset. This check is useful because this
SAS/AF application allows the analyst to run any ad-hoc code
during processing. The EXIST command is used to verify that
indeed a dataset is attempting to be deleted. As with the other
documented methods, the return code is the number of errors.

These five core methods define the dataset attribute family of
classes by providing a datasetID (numeric variable) and
libnameDataset (character variable). The datasetID is the central
value which indicates that a dataset is OPEN (in one of the three
possible modes). There is a fourth mode of OPEN, called
UTILITY (the “V” option), but operationally the software instead
uses proc datasets for any of those types of modifications, since
we desire to document those types of changes in the stored logs.

ATTRC AND ATTRN ATTRIBUTES
Once a datasetID is available, the ATTRC and ATTRN can be
optionally available to a calling program. Each attribute has its
own class-level variable, linked to a GetCAM method. By
definition, the GetCAM option on an attribute specifies the method
triggered when someone wants to obtain the attribute value (SAS
Institute, 2002).

The following example is for NLOBS, one of the most common
attributes used. First, the numeric variable NLOBS is defined for
the class:

public num
 NLOBS/(
 InitialValue=_BLANK_,
 Category='Dataset ATTRN Attribute',
 Description='Returns the number of
logical rows (those not marked for deletion). An
active WHERE clause does not affect this
number',
 GetCAM='NLOBS',
 AutoCreate='Yes',
 Editable='No',
 ValidValues=''
);

Notes on the above method:

1. The variable is public, meaning it can (and typically is)
called from the outside.

2. The variable is linked to an internal method called
“NLOBS” through the GetCAM feature.

3. The value is not editable from the outside.

The code below is the internal NLOBS protected method,
triggered by the GetCAM feature:

NLOBS:protected method NLOBS:update:num
 /(
 Description='Obtain updated NLOBS based
on valid numeric dataset ID'
);
 IF datasetID > 0 then NLOBS=
ATTRN(datasetID,'NLOBS');
 ELSE NLOBS= .;
ENDMETHOD;

Because the ATTRC and ATTRN commands return valid values
contingent on a valid datasetID, the above code reflects that
same requirement, and will only attempt to use the ATTRN
command when a valid datasetID exists. Otherwise, the value
returned is missing (for character values, a blank space would be
returned). There are no error codes or log messages
incorporated in the GetCAM methods, but there could be. As
ATTRN or ATTRC attributes are added to future versions of SAS,
the code would need to be appended by adding class-level
variables and GetCAM methods.

These variables and methods describe how the abstract parent
class makes dataset attributes available. Any code which
accesses a subclass of this parent only needs to refer to
objectName.datasetAttribute to obtain the appropriate value. If
there is no datasetID, then the value returned is missing. The
value of objectName.datasetAttribute cannot, by definition
(Editable='No'), be set from any code outside the dataset attribute
family.

VARIABLE INFORMATION
Variable names are particular to specific types of datasets. This
application creates a series of subdirectories for specific regions
of countries. Each subdirectory may have the same types of
datasets, but a different structure and/or content. For example,
the survey questionnaire layout is typically customized, and each
subdirectory will therefore have a slightly different layout. The
column names (variables) will usually be the same, but the rows
(observations) will be different.

The abstract parent class variable datasetID has a SetCAM
method named “DatasetID”, which is triggered when the value is
set. By definition, the SetCAM option on an attribute specifies the
method triggered when someone wants to set the attribute value
(SAS Institute, 2002). There are no statements in the abstract
parent’s datasetID method, but the subclasses override this
parent method providing the ability to extract variable numbers
with the SCL VARNUM command.

The following example shows an overridden datasetID method for
the edits file, a simple file with two expected column variables,
CRITERIA and EDITVAR:

* Override the datasetID SETCAM to provide
VARNUMs;
datasetID:protected method datasetID:num
 /(
 Description='Obtain dataset attributes
based on valid numeric dataset ID',
 State='O'
);

 _super(datasetID);

 * Populate VARNUMs;
 if datasetID > 0 then do;
 varnum_criteria =
varnum(datasetID,'criteria');
 varnum_editvar =
varnum(datasetID,'editvar');
 end;
 else do;
 varnum_criteria = .;
 varnum_editvar = .;
 end;

endmethod;

Notes:

1. The method overrides the datasetID method, linked to
the SetCAM event in the abstract parent class.

2. Because this is an overridden method, the _SUPER
command is issued to allow for future universal code in
the abstract parent method datasetID.

3. VARNUM_CRITERIA and VARNUM_EDITVAR are two
numeric class-level variables. These variables are
defined in the subclass named
DATASET_ATTR_EDITS.

4. Appropriately, the variable numbers are only valid
during the times the dataset is open, a statement true
only when datasetID has a value.

Other dataset attribute subclasses typically have more variables
than this simple example, which makes the overridden datasetID
method longer. In some classes, the overridden datasetID
method also obtains variable types, variable lengths, or actual
data from the dataset. This information is stored by child classes
in class-level variables or SCL lists.

One specific subclass is called DATASET_ATTR_PROCFREQ,
and here is the overridden (State=’O’) datasetID method and
constructor for that class:

* Override the datasetID SETCAM to provide
VARNUMs;
datasetID:protected method datasetID:num
 /(
 Description='Obtain dataset attributes
based on valid numeric dataset ID',
 State='O'
);

 _super(datasetID);

 * Populate VARNUMs;
 if datasetID > 0 then do;
 varnum_freqvar=
varnum(datasetID,freqvar);
 varnum_count =
varnum(datasetID,'count');
 varnum_percent =
varnum(datasetID,'percent');
 end;
 else do;
 varnum_freqvar = .;
 varnum_count = .;
 varnum_percent = .;
 end;

endmethod;

* CONSTRUCTOR;
dataset_attr_procfreq:public method invar:char
 /(
 Description='Constructor passing
FREQVAR parameter'
);

 freqvar = invar;
endmethod;

The above class is constructed by passing the character variable
INVAR to the method. That value is saved in the class-level
attribute FREQVAR, and becomes the attribute which determines
VARNUM_FREQVAR. The other two numeric variables obtained
are the count and the percent. This subclass takes the output
from PROC FREQ and makes it available to the SCL
environment.

CUSTOMIZED METHODS
Refactoring will continually take place, and it will involve thinking
about what the application knows and does, and how to best
express that functionality behind the scenes. Fowler (1999)
provides many specific and concrete examples of the types of
things which can be done to refactor.

During the refactoring process, it was logical to encapsulate
dataset-specific methods in the dataset attribute class. Instead of
providing specific code, several examples are described here
which could form the creative base for creating your own
customized methods.

One example is obtaining an SCL list which has all the unique
values from a particular column.

A second example is the layout file, which conditionally allows for
up to 26 possible answers on a particular question (the input data
is alphabetic, so 26 comes from the length of the alphabet).
Typically, there are only eight possible answers, but in many
customized surveys, the total possible goes beyond the standard
eight. The DATASET_ATTR_LAYOUT subclass has the ability to
determine how many of those optional columns are on the
customized layout dataset.

Another third example is where the layout subclass determines
how many valid answers there are for a specific question.
Though there may be eight possible answers, the actual question
may only have two possible responses (“yes” and “no”) and the
layout subclass has a method to determine how many valid
answers a particular question has. This type of information is
inherent to the layout dataset definition, and encapsulating the
functionality in the layout subclass centralizes the information in a
single known location. The alternative location for this code
would be in the calling code (whether in the frame or another
class), a strategy which works but could easily lead to repetitive
code throughout the application. Encapsulation is therefore the
preferred approach, and since the dataset attribute family has a
specific function and definition, the developer more easily can
judge what should be included as a customized method.

SUBCLASSING SUBCLASSES
In some structures, it may make sense to create a second (or
higher) level of subclasses. This extension helps when a core set
of dataset definition applies to a group of datasets, each of which
may have particular differences.

In this application, the DATASET_ATTR_LAYOUT_DATED
subclass was built on the layout subclass. The class functionally
compared two layout files together. Operationally, that same
functionality could have been also placed in a layout customized
method. Whether to expand methods into another class or
collapse them into a parent class Is purely a function of
refactoring and developer’s choice (Fowler, 1999), and the
decision need not remain static for all time.

CONCLUSION
This paper has discussed the dataset attribute family, an abstract
parent and its twenty-five children. This family of classes
provides information on and from SAS® datasets, and the
structure is based on the Analysis Matrix design pattern
(Shalloway and Trott, 2002).

The abstract parent class holds responsibility for assigning values
to datasetID and libnameDataset, and make ATTRN and ATTRC
attributes available at the class level. The subclasses allow each
type of dataset to have variable-level information, including
variable numbers, variable types, variable lengths and actual
data. Subclasses also can have customized methods.

Refactoring the abstract parent allows for new ATTRN and
ATTRC attributes to be added with subsequent versions of SAS.
Refactoring the subclasses allows for adding variable information
or customized classes. The whole family structure and
relationships can also be changed.

The structure is of generic utility for any application which
accesses SAS datasets. Further information is available on this
application’s class structure (Tabladillo, 2003a) and development
(Tabladillo, 2003b).

REFERENCES
Fowler, Martin (1999), Refactoring: Improving the Design of
Existing Code, Reading, MA: Addison Wesley Longman, Inc.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design
Patterns: Elements of Reusable Object-Oriented Software,
Reading, MA: Addison Wesley Longman, Inc.
SAS Institute Inc. (2002), SAS OnlineDoc 9, Cary, NC: SAS
Institute, Inc.
Shalloway, A., and Trott, J. (2002), Design Patterns Explained: a
New Perspective on Object-Oriented Design, Boston, MA:
Addison-Wesley, Inc.
Tabladillo, M. (2003a), "Application Refactoring with Design
Patterns", Proceedings of the Twenty-Eighth Annual SAS Users
Group International Conference, Cary, NC: SAS Institute, Inc.
Tabladillo, M. (2003b), "The One-Time Methodology:
Encapsulating Application Data", Proceedings of the Twenty-
Eighth Annual SAS Users Group International Conference, Cary,
NC: SAS Institute, Inc.

ACKNOWLEDGMENTS
Thanks to all the great public health professionals at the Office on
Smoking and Health, Center for Chronic Disease.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Mark Tabladillo
 Email: marktab@marktab.com
 Web: http://www.marktab.com/

